Thursday, November 14, 2019

[OpenCV Tutorial] $4 - Changing the contrast and brightness of an image!

Goal

In this tutorial you will learn how to:
  • Access pixel values
  • Initialize a matrix with zeros
  • Learn what cv::saturate_cast does and why it is useful
  • Get some cool info about pixel transformations

Theory

Image Processing

  • A general image processing operator is a function that takes one or more input images and produces an output image.
  • Image transforms can be seen as:
    • Point operators (pixel transforms)
    • Neighborhood (area-based) operators

Pixel Transforms

  • In this kind of image processing transform, each output pixel's value depends on only the corresponding input pixel value (plus, potentially, some globally collected information or parameters).
  • Examples of such operators include brightness and contrast adjustments as well as color correction and transformations.

Brightness and contrast adjustments

  • Two commonly used point processes are multiplication and addition with a constant:
    g(x)=αf(x)+β
  • The parameters α>0 and β are often called the gain and bias parameters; sometimes these parameters are said to control contrast and brightness respectively.
  • You can think of f(x) as the source image pixels and g(x) as the output image pixels. Then, more conveniently we can write the expression as:
    g(i,j)=αf(i,j)+β

    where i and j indicates that the pixel is located in the i-th row and j-th column.


Code

  • The following code performs the operation g(i,j)=αf(i,j)+β :
    #include <opencv2/opencv.hpp>
    #include <iostream>
    using namespace cv;
    double alpha; /*< Simple contrast control */
    int beta; /*< Simple brightness control */
    int main( int argc, char** argv )
    {
    Mat image = imread( argv[1] );
    Mat new_image = Mat::zeros( image.size(), image.type() );
    std::cout<<" Basic Linear Transforms "<<std::endl;
    std::cout<<"-------------------------"<<std::endl;
    std::cout<<"* Enter the alpha value [1.0-3.0]: ";std::cin>>alpha;
    std::cout<<"* Enter the beta value [0-100]: "; std::cin>>beta;
    for( int y = 0; y < image.rows; y++ ) {
    for( int x = 0; x < image.cols; x++ ) {
    for( int c = 0; c < 3; c++ ) {
    new_image.at<Vec3b>(y,x)[c] =
    saturate_cast<uchar>( alpha*( image.at<Vec3b>(y,x)[c] ) + beta );
    }
    }
    }
    namedWindow("Original Image", 1);
    namedWindow("New Image", 1);
    imshow("Original Image", image);
    imshow("New Image", new_image);
    return 0;
    }

Explanation

  1. We begin by creating parameters to save α and β to be entered by the user:
    double alpha;
    int beta;
  2. We load an image using cv::imread and save it in a Mat object:
    Mat image = imread( argv[1] );
  3. Now, since we will make some transformations to this image, we need a new Mat object to store it. Also, we want this to have the following features:
    • Initial pixel values equal to zero
    • Same size and type as the original image
      Mat new_image = Mat::zeros( image.size(), image.type() );
      We observe that cv::Mat::zeros returns a Matlab-style zero initializer based on image.size() and image.type()
  4. Now, to perform the operation g(i,j)=αf(i,j)+β we will access to each pixel in image. Since we are operating with BGR images, we will have three values per pixel (B, G and R), so we will also access them separately. Here is the piece of code:
    for( int y = 0; y < image.rows; y++ ) {
    for( int x = 0; x < image.cols; x++ ) {
    for( int c = 0; c < 3; c++ ) {
    new_image.at<Vec3b>(y,x)[c] =
    saturate_cast<uchar>( alpha*( image.at<Vec3b>(y,x)[c] ) + beta );
    }
    }
    }
    Notice the following:
    • To access each pixel in the images we are using this syntax: image.at<Vec3b>(y,x)[c] where y is the row, x is the column and c is R, G or B (0, 1 or 2).
    • Since the operation αp(i,j)+β can give values out of range or not integers (if α is float), we use cv::saturate_cast to make sure the values are valid.
  5. Finally, we create windows and show the images, the usual way.
    namedWindow("Original Image", 1);
    namedWindow("New Image", 1);
    imshow("Original Image", image);
    imshow("New Image", new_image);
    waitKey(0);
Note
Instead of using the for loops to access each pixel, we could have simply used this command:
image.convertTo(new_image, -1, alpha, beta);
where cv::Mat::convertTo would effectively perform *new_image = a*image + beta*. However, we wanted to show you how to access each pixel. In any case, both methods give the same result but convertTo is more optimized and works a lot faster.

Result

  • Running our code and using α=2.2 and β=50
    $ ./BasicLinearTransforms lena.jpg
    Basic Linear Transforms
    -------------------------
    * Enter the alpha value [1.0-3.0]: 2.2
    * Enter the beta value [0-100]: 50
  • We get this:
    Basic_Linear_Transform_Tutorial_Result_big.jpg

No comments:

Post a Comment

Back to Top